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1 Introduction

Metrological traceability is the property of a measurement result whereby the result can be related to a reference,
such as a primary standard or unit, through a documented, unbroken chain of calibrations, each contributing
to the measurement uncertainty [1]. When the traceability chain involves computation, it is necessary that the
computational links in the chain are recognised explicitly and treated as any other link. For example, compu-
tational links should be shown to be operating correctly and, when they involve approximations, consideration
given to their contribution to the measurement uncertainty. Furthermore, when software is used to deliver a
measurement result, metrological traceability requires the documentation of all aspects in the process of devel-
oping, implementing and testing the software so that each stage in the process can be understood, checked and
reproduced.

It is only possible to verify and validate software when it is known what problem the software is intended
to solve or task the software is intended to execute. A statement of the computational aim of the software is
used to set the user and functional requirements for the software developer, that is, to specify what is required
of software to be a conforming product, and to provide a basis for the verification and validation of a software
implementation. The aim of this report is to describe a generic approach to specifying a computational aim
and to illustrate that approach with three examples: one that is typical of requirements arising in dimensional
metrology, and two that are interdisciplinary being concerned with measurement uncertainty evaluation and
key comparison data evaluation. The audience of the report is the members of the TraCIM network. Although
others (outside the TraCIM network) may propose a specification of a computational aim, it is anticipated
that those involved in the TraCIM system will review and release that specification. A companion report [2]
describes the mathematical and ICT (information and communications technology) tools used to capture the
specification of a computational aim.

The report is organised as follows. Section 2 discusses the requirements of a (specification of a) computa-
tional aim, and sections 3 and 4 describe the information, organised into a set of ‘fields’, proposed to specify a
computational aim. Sections 5–7 give some examples of computational aims specified in this way. A summary
and conclusions are given in section 8.

For a glossary of terms, see [3].

2 Requirements of a computational aim

A computational aim is required to state what problem the software is intended to solve or task the software is
intended to execute and not how the problem is to be solved or task is to be executed [4]. Decisions about how
the task is to be executed, such as the choice of algorithm, are the concern of the software developer whose
responsibility it is to implement the computational aim, and can depend, for example, on the environment in
which the algorithm is to be implemented and used.

The specification of the computational aim should be unambiguous, complete, free from contradictions, and
independent of the environment, such as hardware and software configurations, in which it is to be implemented.
The task ‘calculate the mean of a set of numbers’ is not complete: how many numbers are to be input? is the
arithmetic or geometric mean to be calculated? The task ‘perform task A when switch S is in position 1 or 2
and task B when switch S is in position 2 or 3’ includes a contradiction: what task is to be performed when the
switch is in position 2? Neither statements provide acceptable (specifications of) computational aims.

The use of natural language to specify a computational aim can lead to specifications that are verbose and
ambiguous. (Indeed, ambiguity is often exploited in the everyday use of natural language.) A difficulty of using
a programming language to specify a computational aim is that the behaviour of the programme can depend
on, for example, the choice of hardware and compiler options. In addition, translation between programming
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languages can be problematic, particularly when language-specific features are used. Instead, it is proposed to
use the abstract and universal language of mathematics to provide specifications of computational aims, which
include propositional and predicate calculus [5] and formal description techniques and languages used in formal
methods [4]. (In fact, only constructive mathematics is considered to avoid possible difficulties associated with
incompleteness theorems, etc.)

Furthermore, it is proposed to distinguish as far as possible between the purely mathematical problem that is
to be solved, which involves operations on numerical values, and an instantiation of the mathematical problem
within a metrology area, measuring system or instrument, for which the numerical values will be associated
with quantities with given dimensions, measurement units and (possibly) sets of typical values. In this way,
the task ‘calculate the arithmetic mean of ten lengths with the units of the metre’ is considered as a refinement
of the task ‘calculate the arithmetic mean of ten lengths’ that, in turn, is a refinement of the mathematical task
‘calculate the arithmetic mean of ten real numbers’. (In the context of formal methods, ‘refinement’ is used
to describe a process of producing more detailed specifications of a computational aim that are closer to a
software implementation. Here, we use the term to mean a process of producing more detailed specifications
that are closer to the application of the computational aim within a particular metrology area.) Whereas general
reference problems (defined by a reference data set and corresponding reference results) are associated with the
computational aim for a mathematical problem, customised or bespoke reference problems are associated with
a refinement of such a computational aim.

3 Specifying the computational aim of the mathematical problem

The specification of the computational aim of an underpinning mathematical problem is composed of informa-
tion contained in the following fields:

1. Unique identifier;

2. Language;

3. Title;

4. Keywords;

5. Mathematical area;

6. Dependencies;

7. Input parameters:

(a) Symbol;

(b) Description;

(c) Type;

(d) Shape;

(e) Constraints;

8. Output parameters:

(a) Symbol;

(b) Description;

2
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(c) Type;

(d) Shape;

(e) Constraints;

9. Mathematical model;

10. Signature;

11. Properties;

12. References;

13. Additional notes;

14. History.

The fields are described below. Those fields that are mandatory and searchable are indicated. A specification of
a computational aim will not be considered complete unless information is provided for all mandatory fields. A
field is searchable if the set of all computational aims for which the field (or a part of the field) takes a prescribed
value can be identified, i.e., the set is unique and can be constructed in a finite time using a finite number of
operations. The value may be prescribed from a defined set of values (as in a drop-down list) or as free-text.

3.1 Unique identifier

A unique identifier assigned by the TraCIM system using information in subsequent fields that takes the form

<language>/<mathematical area>/<refinement number>/######

where ‘######’ is a six digit positive integer containing leading zeros as necessary, which is incremented by
the TraCIM system each time a computational aim is approved. The field is mandatory and searchable, and
should be human-readable. If a mathematical area is not specified, the ‘dash’ symbol (-) is used in its place. The
refinement number for the specification of the computational aim for an underpinning mathematical problem is
zero. Examples of valid identifiers would be

en/I1a1a/0/000001

and

de/-/0/000099

(see sections 3.2 and 3.5).

3.2 Language

The natural language in which the computational aim is written, expressed as the full language name and its
abbreviation [6] . The field is mandatory and searchable. Examples include English (en), French (fr) and
German (de).

3.3 Title

A title or short statement of the computational aim. The field is mandatory and searchable.

3



NEW06 TraCIM

3.4 Keywords

A list of keywords. The field is not mandatory but is searchable.

3.5 Mathematical area

The mathematical area to which the computational aim belongs. The field is not mandatory but is searchable. A
classification based on the ‘Guide to Available Mathematical Software’ (GAMS) index [7] is used. The highest
level of the index contains the following broad subject areas:

A Arithmetic, error analysis;

B Number theory;

C Elementary and special functions;

D Linear algebra;

E Interpolation;

F Solution of nonlinear equations;

G Optimization;

H Differentiation, integration;

I Differential and integral equations;

J Integral transforms;

K Approximation;

L Statistics, probability;

M Simulation, stochastic modeling;

N Data handling;

O Symbolic computation;

P Computational geometry;

Q Graphics;

R Service routines;

S Software development tools;

Z Other.

These subject areas are further subdivided into more specific problem areas. For example, the area

I Differential and integral equations

is subdivided into the classes

4
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I1 Ordinary differential equations (ODE’s),

I2 Partial differential equations, and

I3 Integral equations (I3),

each of which are themselves further subdivided. For example, the class I1a1a is constructed as

I Differential and integral equations,

I1 Ordinary differential equations (ODE’s),

I1a Initial value problems,

I1a1 General, nonstiff or mildly stiff,

I1a1a One-step methods (e.g., Runge-Kutta),

and is not further subdivided.

3.6 Dependencies

A list of dependencies on other computional aims (with their unique identifiers). The field is not mandatory.

3.7 Input parameters

The parameters that must be assigned in order for the computational aim to be executed. The field is manda-
tory. The number of input parameters is specified and then for each input parameter the following mandatory
information is provided:

1. Symbol;

2. Description;

3. Type, such as

(a) unsigned integer N0, with values in the set {0, 1, 2, . . .},

(b) signed integer Z , with values in the set {. . . ,−2,−1, 0, 1, 2, . . .},

(c) realR,

(d) complex C;

(e) boolean B, with values ‘true’ or ‘false’, or ‘T’ or ‘F’, or ‘0’ or ‘1’, etc.,

(f) character or string S, or

(g) mathematical function F ;

4. Shape;

5. Constraints or function signature.

5



NEW06 TraCIM

For parameters of type other than S and F , the shape of the parameter can be scalar, (row or column)
vector of length n, matrix of dimension n1×n2, or k-dimensional matrix of dimension n1×n2×· · ·×nk. For
parameters of type S, the shape of the parameter can be single character, string of length n, (row or column)
vector of length m of single characters, or (row or column) vector of length m of strings of length n. For
parameters of type F , the shape of the parameter shall be the same as for the output parameter of the function.

For parameters of type other than F , a constraint can be expressed as a mathematical condition. For
example, the constraint (or property) that a real scalar parameter takes a value x in the finite interval (a, b) may
be expressed as a < x < b or x ∈ (a, b). A general approach to specifying a constraint on the parameter is
to use a predicate, i.e., a boolean-valued function of the parameter that is true when the value of the parameter
satisfies the constraint and false otherwise. For example:

• The constraint (above) that a real scalar parameter takes a value x in the finite interval (a, b) may be
expressed as

{x : P (x)}, P (x) = ((a < x) ∧ (x < b)),

where a < x and x > b are propositions each of which is either true or false, ∧ denotes the logical
operator ‘AND’, = denotes assignment, and P (x) is the predicate.

• A real scalar parameter with the property that it is a constant can be defined by the constraint that the
parameter takes a single value x equal to the constant, i.e.,

{x : P (x)}, P (x) = (x == c),

where == denotes the relational operator ‘EQUALS’, and c is the constant.

• A (row) vector boolean parameter with the property that at least one component of the parameter must
take the value ‘true’ is expressed as

{b : P (b)}, P (b) = (b1 ∨ · · · ∨ bn),

where b = (b1, . . . , bn) denotes a value of the parameter, and ∨ denotes the logical operator ‘OR’.

• The constraint that a character string parameter takes a value s from a specified set of possible strings,
e.g., {‘Y’, ‘y’, ‘N’, ‘n’} is expressed as

{s : P (s)}, P (s) = ((s == ‘Y’) ∨ (s == ‘y’) ∨ (s == ‘N’) ∨ (s == ‘n’)).

A parameter of type F is used to express a mathematical relationship f between a set of (dummy) parame-
ters, denoted by X1, . . . , Xp, and a single (dummy) parameter, denoted by Y , in the generic form

Y = f(X1, . . . , Xp).

A ‘constraint’ on the function is used to specify the signature of the function, which identifies the input and
output parameters of the function, and constraints on the input and output parameters are used to specify,
respectively, the domain and co-domain of the function. For example:

{f : Y = f(X1, . . . , Xp), X1 ∈ R, X2 ∈ R, . . . , Xp ∈ R, Y ∈ R},

or
{f : (X1 ∈ R, . . . , Xp ∈ R) 7→ Y ∈ R}.

6
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3.8 Output parameters

The parameters that are assigned as a result of executing the computational aim. The field is mandatory.
An output parameter can be of type unsigned integer N0, signed integer Z , real R, complex C, boolean B or
character or string S . The number of output parameters is specified and then each output parameter is described
by the same information as for an input parameter (section 3.7). A parameter can be included as both an input
and output parameter if some aspect of the parameter, such as its value or the constraints on its value, is modified
by the execution of the computational aim.

3.9 Mathematical model

A statement of what problem is intended to be solved or task is intended to be undertaken. The field is manda-
tory. The mathematical model provides a description of the relationships between the input and output pa-
rameters of the computational aim. It can be expressed using mathematical notation, in a formal specification
language or as pseudo-code that is independent of any intended implementation of the computational aim. The
description of the mathematical model might not be unique, but it should be unambiguous, complete and free
from contradictions.

3.10 Signature

A statement (in the form of a function signature) that is indicative of how software implementing the compu-
tational aim would be called. The field is mandatory. The signature is expressed using a dummy name for
the function, but would clarify the parameters listed above that are input parameters, output parameters and
input/output parameters.

3.11 Properties

A list of properties of the computational aim, such as uniqueness of a solution, a mathematical characterisa-
tion of the solution, information about the sensitivity of the solution to perturbations in the values of the input
parameters, and conditions (constraints) that apply to combinations or functions of the input and output pa-
rameters. Such properties can be useful as the basis for generating reference data and corresponding reference
results to test a software implementation of the computational aim. The field is not mandatory.

3.12 References

A list of references to supporting papers, reports, guides and documentary standards (with internet links where
they exist). The references should relate to open or publically-available documents and not documents that are
restricted or commercially-sensitive. The field is not mandatory.

3.13 Additional notes

Any notes that might help with understanding and implementing the computational aim. The field is not manda-
tory. For example, notes may include:

• Information pertaining to an implementation of the computational aim;

• A reference to a national or international database, such as the BIPM’s Key Comparison Database
(KCDB), that provides a metrological context to the computational aim;

• A list of typical metrological applications. For example, for a Chebyshev element calculation:

7
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1. Application 1: metrology area length, branch coordinate metrology, inspection of form deviation;

2. Application 2: metrology area electromagnetic, . . . .

3.14 History

A history of the computational aim. The field is mandatory. The following information is provided:

1. Date created;

2. Author;

3. For each amendment to the computational aim:

(a) Date of amendment;

(b) Author of amendment;

(c) Summary of amendment.

4 Specifying a refinement of a computational aim

The computational aims considered in section 3 are intended to be generic and not to relate to a particular
metrology area, measuring system or instrument. A ‘refinement’ of the specification of such a computational
aim gives context to the computational aim in terms of a metrology area, measuring system or instrument. The
refinement involves providing information in additional, optional fields (identified below in red italics). All
other fields shall remain unchanged, except for the unique identifier, which is also written in red italics.

A number of refinements of a computational aim is possible. A first refinement may associate dimensions
(and units) with the quantities involved in specifying the computational aim. A second refinement may associate
a particular sets of values with those quantities. An original (parent) specification need not exist before a
refinement is developed. For example, the interest may only be in the specification of a computational aim
related to a particular metrology area. However, it may be useful leter to develop the (more generic) parent
specification in order to collect together refinements of it that are specific to different metrology areas. If a
parent specification exists, each refinement should be traceable to it, and should inherit any changes made
to it. Establishing treaceability of a software implementation to a refinement of a computational aim may
be weaker than establishing traceability to the parent computational aim because the traceability only applies
within the context of the refinement, e.g., to problems defined by typical values of the input parameters to the
computational aim.

1. Unique identifier;

2. Language;

3. Title;

(a) Subtitle;

4. Keywords;

(a) Additional keywords;

5. Mathematical area;

8
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(a) Metrology area;

6. Dependencies;

(a) Additional dependencies;

7. Input parameters:

(a) Symbol;

(b) Description;

(c) Type;

(d) Shape;

(e) Constraints;

(f) Dimension or reference;

(g) Values;

8. Output parameters:

(a) Symbol;

(b) Description;

(c) Type;

(d) Shape;

(e) Constraints;

(f) Dimension or reference;

(g) Values;

9. Mathematical model;

10. Signature;

11. Properties;

(a) Additional properties;

12. References;

(a) Additional references;

13. Additional notes;

(a) Further additional notes;

14. History;

(a) History of refinement.

9



NEW06 TraCIM

4.1 Unique identifier

A unique identifier assigned by the TraCIM system using information in subsequent fields that takes the form

<language>/<mathematical area>/<metrology area>/<refinement number>/######

where <refinement number> is a positive integer. Examples of valid identifiers would be

en/I1a1a/L/1/000001

that identifies the first refinement of the computational aim with identifier ‘en/I1a1a/0/000001’, and

de/-/INT/2/000099

that identifies the second refinement of ‘de/-/0/000099’.

4.2 Subtitle

A subtitle to the title of the computational aim giving context to the refinement of the computational aim. The
field is mandatory.

4.3 Metrology area

The metrology area to which the computational aim belongs. The field is mandatory and searchable. A classifi-
cation based on the Consultative Committees of the International Committee for Weights and Measures (CIPM)
is used [8]:

EM Electricity and magnetism;

PR Photometry and radiometry;

T Thermometry;

L Length;

TF Time and frequency;

RI Ionizing radiation;

U Units;

M Mass and related quantities;

QM Amount of substance–metrology in chemistry;

AUV Acoustics, ultrasound and vibration.

The further metrology area, viz.,

INT Interdisciplinary

is also included, which may be considered appropriate for generic calculations that are important to a number
of the specific areas listed above.

10
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4.4 Dimension or reference

The dimension of an input or output parameter expresses the dependence of the parameter on base quantities
in a system of quantities. The field is mandatory. The dependence takes the form of a product of powers of
factors corresponding to those base quantities omitting any numerical factor [1, clause 1.7]. For this purpose it
is recommended that the International System of Quantities (ISQ) is used [1, clause 1.6], which is founded on
the seven base quantities of

• length (L),

• mass (M),

• time (T),

• electric current (I),

• thermodynamic temperature (Θ),

• amount of substance (N), and

• luminous intensity (J).

For example, in the ISQ, the dimension of force is MLT−2. The dimension of the parameter is given when it
is not necessary to be specific about the reference (see below) of the parameter. For example, a computational
aim may be valid when the measurement unit of a parameter is given as kg m s−2 or as g cm s−2. However, it
can be expected that parameters having the same dimension will also have the same reference.

The reference of the parameter can be a measurement unit, measurement procedure or reference material.
When a measurement unit [1, clause 1.9] is specified, it is recommended that the International System of Units
(SI) [1, clause 1.16] is used for this purpose. The SI is founded on the measurement units for the base quantities
of the ISQ, namely

• the metre (m) for length,

• the kilogram (kg) for mass,

• the second (s) for time,

• the ampere (A) for electric current,

• the kelvin (K) for thermodynamic temperature,

• the mole (mol) for amount of substance, and

• the candela (cd) for luminous intensity,

together with units derived from the base units, and multiples and sub-multiples of those units. For example,
in the SI, the measurement unit of force might be given as kg m s−2, when expressed in terms of the base
units, or as N (newton), when expressed in terms of a derived unit, or as g cm s−2, when expressed in terms
of sub-multiples of the base units. The measurement unit for a parameter of dimension one (or dimensionless
parameter) can be given as ‘one’ or ‘1’. In some cases the measurement unit for a dimensionless parameter
is given a special name, e.g., radian, steradian, decibel or international normalised ratio, or is expressed by a
quotient, e.g., millimole per mole equal to 103 or microgram per kilogram equal to 109.

11



NEW06 TraCIM

An example of a parameter for which the reference is a measurement procedure is the ‘Rockwell C hardness
of a given sample’, whose value might be given as ‘43.5 HRC’ where ‘HRC’ denotes a measurement procedure
to determine the Rockwell-C hardness of a sample block of material [1, clause 1.19].

An example of a parameter for which the reference is a reference material is the ‘arbitrary amount-of-
substance concentration of lutropin in a given sample of human blood plasma (WHO International Standard
80/552 used as a calibrator)’, whose value might be given as ‘5.0 IU/l’, where ‘IU’ stands for ‘WHO Interna-
tional Unit’ [1, clause 1.19].

4.5 Values

Typical values for an input or output parameter may be expressed as a single (fixed) value, an interval (or set of
intervals), or as a state-of-knowledge probability distribution. The latter may be used when there is knowledge
about the values of a parameter in the form of an estimate and associated uncertainty. The field is not mandatory.

4.6 Additional keywords, dependencies, properties, references and notes

Aditional information giving context to the refinement of the computational aim. The fields are not mandatory.

4.7 History of refinement

A history of the refinement of the computational aim. The field is mandatory.

5 Example 1

This example is concerned with specifying the computational aim for a task, viz., determining a best-fit geomet-
ric element from co-ordinate data obtained using a co-ordinate measuring machine (CMM), that is typical of
requirements arising in dimensional metrology and important for making decisions about manufactured parts.
Comparable specifications will apply for computational aims involving other geometric elements and differ-
ent best-fit criteria, such as orthogonal distance regression and Chebyshev (minimum zone) regression. The
computational aim is specified in two parts. The first part considers the underpinning mathematical problem
of determining a best-fit (i.e., minimum circumscribed) geometric element (i.e., circle) to co-ordinate data re-
stricted to the xy-plane. The second part considers a refinement of the specification given in the first part to
the case that the co-ordinates of the data have the dimension of length and units of the metre, and are obtained
using a CMM with a working volume of 1 m× 1 m× 1 m measuring in a plane orthogonal to the z-axis of the
CMM.

In this example the mathematical model takes the form of an optimisation problem expressed in terms
of the parameters of the geometric element to be determined and the provided measured data (see below).
The example illustrates a computational aim for which the input and output parameters are numeric, but take
different shapes (scalar, vector and matrix) and different numerical types (integer and real). Furthermore,
it is possible to state properties of the solution to the optimisation problem in the form of a mathematical
characterisation of that solution that can be used as the basis for generating reference data and corresponding
reference results.

A natural language description of the optimisation problem is ‘determine the circle of smallest radius that
circumscribes the given measured co-ordinate data’. Introducing (xi, yi), i = 1, . . . ,m, to denote the co-
ordinate data, (x0, y0) the co-ordinates of the circle centre, and r the circle radius, the optimisation problem

12
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can be expressed mathematically as: determine values (x∗0, y
∗
0, r
∗) of (x0, y0, r) to solve

min
x0,y0,r

r such that (xi − x0)2 + (yi − y0)2 − r2 ≤ 0, i = 1, . . . ,m.

An alternative expression of the computational aim is: determine values x∗0, y
∗
0, r
∗ to satisfy

{(x∗0, y∗0, r∗) ∈ C} ∧ {∀ (x0, y0, r) ∈ C, r∗ ≤ r},

where
{(x0, y0, r) ∈ C} ⇔ {∀i, (xi − x0)2 + (yi − y0)2 − r2 ≤ 0}.

Here,C is the set of all circles (x0, y0, r), defined by centre co-ordinates (x0, y0) and radius r, that circumscribe
the given measured co-ordinate data, and the circle defined by (x∗0, y

∗
0, r
∗) is chosen as that element ofC having

smallest radius. Both constitute valid descriptions of the mathematical model for the task.
The specification of the underpinning mathematical problem is:

Unique identifier en/-/0/000001

Language English (en)

Title determine minimum circumscribed circle to data in the xy–plane

Keywords 3

1 geometric element

2 circle

3 minimum circumscribed

Mathematical area -

Dependencies None

Input parameters 2

1 m

number of data points

N0

scalar

m > 0

2 X , withXi,1 = xi,Xi,2 = yi

coordinates of data points

R

matrix of dimension m× 2

none

Output parameters 2

1 X0 = (x0, y0)

13
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coordinates of circle centre

R

vector of length 2

none

2 r

radius of circle

R

scalar

r ≥ 0

Mathematical model given (xi, yi), i = 1, . . . ,m, determine values (x∗0, y
∗
0, r
∗) of (x0, y0, r) to

solve

min
x0,y0,r

r such that (xi − x0)2 + (yi − x0)2 − r2 ≤ 0, i = 1, . . . ,m

Signature [X0, r] = MCCircle2d(m,X)

Properties 4

1 for m = 1, the data point defines a circle of zero radius

2 for m = 2, the data points define a diameter of the solution circle

3 for m > 2, the solution circle interpolates a subset of the data points for which
either (a) two of the interpolated points define a diameter of the circle, or (b)
three of the interpolated points define an acute-angled triangle

4 a single global solution exists

References 1

1 G T Anthony, H M Anthony, B Bittner, B P Butler, M G Cox, R Drieschner,
R Elligsen, A B Forbes, H Gross, S A Hannaby, P M Harris and J Kok, Ref-
erence software for finding Chebyshev best-fit geometric elements, Precision
Engineering, 19, 28–36, 1996

Additional notes None

History created 2012-11-05 by Peter Harris (NPL, UK)

The additional information necessary for the specification of the refinement of the computational aim is:

Unique identifier en/-/L/1/000001

Subtitle measurements made by co-ordinate measuring machine

Additional keywords 2

14
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1 dimensional metrology

2 co-ordinate measuring machine

Metrology area L

Additional dependencies en/-/0/000001

Input parameters 2

1 dimensionless

10 ≤ m ≤ 1 000

2 dimension L, unit m

−0.5 ≤ xi ≤ 0.5, −0.5 ≤ yi ≤ 0.5

Output parameters 2

1 dimension L, unit m

−0.5 ≤ x0 ≤ 0.5, −0.5 ≤ y0 ≤ 0.5

2 dimension L, unit m

0 ≤ r ≤ 1

Additional properties None

Additional references None

Additional notes None

History of refinement created 2012-11-05 by Peter Harris (NPL, UK)

6 Example 2

This example is concerned with specifying the computational aim for a task, viz., evaluating an estimate and
associated standard uncertainty for a measured quantity, that is interdisciplinary. It illustrates a computational
aim for which there are input parameters that take the form of mathematical functions. The mathematical
model for the computational aim is expressed as a set of formulæ that relate the output parameters to the input
parameters.

Unique identifier en/-/0/000002

Language English (en)

Title evaluate estimate and associated standard uncertainty by propagation of distri-
butions

Keywords 3

1 estimate

2 standard uncertainty

15
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3 propagation of distributions

Mathematical area -

Dependencies None

Input parameters 3

1 N

number of input quantities

N0

scalar

{N : P (N)}, P (N) = (N > 0)

2 f

measurement model, which maps values ξ of the input quantities to values η
of the output quantity

F

scalar

{f : η = f(ξ), ξ ∈ RN , η ∈ R}

3 g

joint probability density functon for input quantities, which maps values of the
input quantities to values p of probability density

F

scalar

{g : p = g(ξ), ξ ∈ RN , p ∈ R, p ≥ 0,
∫∞
−∞ p dξ =

∫∞
−∞ g(ξ) dξ = 1}

Output parameters 2

1 y

estimate of output quantity

R

scalar

none

2 uy

standard uncertainty associated with y

R

scalar
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{uy : P (uy)}, P (uy) = (uy ≥ 0)

Mathematical model evaluate
y =

∫ ∞
−∞

ηgY (η) dη

and
u2y =

∫ ∞
−∞

(η − y)2gY (η) dη

where
gY (η) =

∫ ∞
−∞

δ[η − f(ξ)]g(ξ) dξ

and δ(·) is the Dirac-delta function

Signature [y, uy] = EvaluateUnc(N, f, g)

Properties None

References 1

1 BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML, Guide to the ex-
pression of uncertainty in measurement (GUM) (GUM 1995 with minor cor-
rections), Bureau International des Poids et Mesures, JCGM 100:2008

Additional notes 2

1 implementations of this computational aim include the law of propagation of
uncertainty and a Monte Carlo method

2 analytical solutions are available for some special cases

History created 2012-11-05 by Peter Harris (NPL, UK)

7 Example 3

This example is concerned with specifying the computational aim for a task, viz., evaluating a key comparison
value, its associated standard uncertainty and degrees of equivalence from measurement results provided by the
laboratories participating in the comparison, that is interdisciplinary and underpins measurement traceability at
the international level (between national metrology institutes). The example illustrates a computational aim for
which there are input parameters that take the form of characters or strings and booleans. A set of refinements
of the computational aim might be specified in order to address key comparison data evaluation within different
metrology areas, such as length, mass and amount of substance.

Unique identifier en/-/0/000003

Language English (en)

Title evaluate reference value, associated standard uncertainty and degrees of equiv-
alence from key comparison data

Keywords 5

1 mutual recognition arrangement
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2 key comparison

3 reference value

4 degrees of equivalence

5 weighted mean

Mathematical area -

Dependencies None

Input parameters 5

1 N

number of laboratories

N0

scalar

{N : P (N)}, P (N) = (N > 0)

2 L = (L1, . . . , LN )>

identifiers Li for the laboratories (e.g., ‘NPL’, ‘PTB’, etc.)

S

vector of length N

{L : P (L)}, P (L) = ((∀ i, len(Li) > 0) ∧ (∀ i 6= j, Li 6= Lj))

3 I = (I1, . . . , IN )>

those laboratories for which Ii is ‘true’ are included in the calculation of the
reference value and its associated standard uncertainty

B

vector of length N

{I : P (I)}, P (I) = (I1 ∨ · · · ∨ IN )

4 x = (x1, . . . , xN )>

measured values xi provided by the laboratories

R

vector of length N

none

5 ux = (u1, . . . , uN )>

standard uncertainties ui associated with the measured values provided by the
laboratories
R
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vector of length N

{ux : P (ux)}, P (ux) = ((u1 ≥ 0) ∧ · · · ∧ (uN ≥ 0))

Output parameters 5

1 y

key comparison reference value

R

scalar

none

2 uy

standard uncertainty associated with the key comparison reference value

R

scalar

{uy : P (uy)}, P (uy) = (uy ≥ 0)

3 D withDi,1 = di, Di,2 = U(di)

degrees of equivalence (DoE): di is the value component of the DoE, andU(di)
is the expanded uncertainty associated with di corresponding to a level of con-
fidence of 95 %
R

matrix of dimension N × 2

{D : P (D)}, P (D) = ((U(d1) ≥ 0) ∧ · · · ∧ (U(dN ) ≥ 0))

4 L1 = (L1,1, . . . , L1,n1)>

identifiers L1,i for those laboratories included in the calculation of y and uy

S

vector of length n1 ≥ 1, where n1 is the number of elements of I that are
‘true’

{L1 : P (L1)}, P (L1) = ((s ∈ L1 ⇒ s ∈ L) ∧ (∀ i 6= j, L1,i 6= L1,j))

5 L2 = (L2,1, . . . , L2,n2)>

identifiers L2,i for those laboratories not included in the calculation of y and
uy

S

vector of length n2 ≥ 0, where n2 is the number of elements of I that are
‘false’
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{L2 : P (L2)}, P (L2) = ((s ∈ L2 ⇒ s ∈ L) ∧ (∀ i 6= j, L2,i 6= L2,j))

Mathematical model evaluate

y =

∑
i:Ii

xi/u
2
i∑

i:Ii
1/u2i

and
u2y =

1∑
i:Ii

1/u2i
;

evaluate
di = xi − y, U(di) = 2u(di), i = 1, . . . , N,

where

u2(di) = u2i − u2y, ∀ i : Ii, u2(di) = u2i + u2y, ∀i : ¬Ii;

evaluate
L1 = L(I), L2 = L(¬I)

Signature [y, uy,D,L1,L2] = KCDataEvaluation(N,L, I,x,ux)

Properties 1

1 n1 + n2 = N

References 2

1 BIPM, Mutual recognition of national measurement standards and of cali-
bration and measurement certificates issued by national metrology institutes,
Technical Report, Bureau International des Poids et Mesures, Sèvres, France,
1999 (Technical supplement revised 2003)

2 M G Cox, The evaluation of key comparison data, Metrologia, 39, 58995, 2002

Additional notes 8

1 the constraint on L is to ensure that no element Li can be the empty string and
no two elements are equal

2 the constraint on I is to ensure that at least one element Ii must be ‘true’

3 the constraint on L1 is to ensure that its elements are a subset of those of L
and no two elements are equal

4 the constraint on L2 is to ensure that its elements are a subset of those of L
and no two elements are equal

5 if n2 = 0, L2 is returned as the empty matrix

6 the summations in the definition of the mathematical model are taken over
the subset I1 of the indices {1, . . . , N} of those laboratories included in the
calculation of the key comparison reference value and its associated standard
uncertainty

7 the symbol ¬ used in the definition of the mathematical model denotes the
logical operator ‘NOT’
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8 it is recommended that a statistical test, such as a χ2–test, is applied to con-
firm the consistency of the provided laboratory measurement results, compris-
ing measured values and associated standard uncertainties, with the calculated
weighted mean

History created 2012-11-05 by Peter Harris (NPL, UK)

8 Summary and conclusions

It is only possible to verify and validate software when it is known what problem the software is intended to
solve or task the software is intended to execute. A statement of a specification for the computational aim of the
software is used to set the user and functional requirements for the software developer, that is, to specify what
is required of software to be a conforming product, and to provide a basis for the verification and validation
of a software implementation. This report has described a generic approach to specifying a computational aim
and has illustrated that approach with three examples: one that is typical of requirements arising in dimensional
metrology, and two that are interdisciplinary being concerned with measurement uncertainty evaluation and key
comparison data evaluation. It has been proposed that (a) the abstract and universal language of mathematics is
used to provide specifications of computational aims, and (b) refinement is used to distinguish as far as possible
between the purely mathematical problem that is to be solved, which involves operations on numerical values,
and an instantiation of the mathematical problem within a metrology area, measuring system or instrument, for
which the numerical values will be associated with quantities with given dimensions, measurement units and
(possibly) sets of typical values. A companion report [2] describes the mathematical and ICT (information and
communications technology) tools used to capture the specification of a computational aim.
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